

Large-Scale Cellular Coverage Analyses for UAV Data Relay via Channel Modeling

Yaguang Zhang, Tomohiro Arakawa, James V. Krogmeier, Christopher R. Anderson, David J. Love, and Dennis R. Buckmaster

- > Rural areas are of a very low priority in terms of cellular broadband coverage, because of the low population density and the high cost of infrastructure construction.
- > Digital agriculture has become a powerful motivator for improving rural wireless.
- \blacktriangleright UAVs could help extend coverage via data relay.

A series of *quantitative* analyses for *large geographic* areas based on *real-life* data ^[a].

Upper bounds on system-level coverage gains:

Discussion

 \succ More improvement is expected for areas with larger

- ^[a] Zhang, T. Arakawa, J. V. Krogmeier, C. R. Anderson, D. J. Love and D. R. Buckmaster, "Large-Scale Cellular Coverage Analyses for UAV Data Relay via Channel Modeling," ICC 2020 - 2020 IEEE International Conference on Communications (ICC), Dublin Ireland, 2020, pp. 1-6, doi: 10.1109/ICC40277.2020.9149403.
- ^[b] Implemented using Matlab. More about Matlab at: <u>https://www.mathworks.com/products/matlab.html</u> Matlab code available at: <u>https://github.com/YaguangZhang/CellCoverageMapperForDronesMatlabWorkspace.git</u>

elevation variation.

 \succ Future work includes (1) simulation for larger geographic regions, e.g. the whole Indiana state; (2) higher-resolution simulations; (3) performance evaluation via measurements; (4) data relay UAV deployment and track planning.

Acknowledgements

Sponsorship for this work was provided by the Foundation for Food and Agriculture Research under award 534662 and the National Science Foundation under grant CNS-1642982.